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Abstract

Two-dimensional steady free convection from an isothermal vertical plate is studied in a gas where a reversible
very fast reaction of dissociation At 2B takes place at atmospheric pressure. The e�ective properties in the
presence of dissociation are evaluated. The governing boundary-layer equations are solved numerically for a wide
range of values of the independent variables. All the data obtained are correlated by a single correlation even if the

temperature interval in the boundary layer �TW, T1� is allowed to vary in a wide range, both in relative location
and width, in respect to the temperature interval of dissociation. The correlated dimensionless parameters include
the ratio rW=r1 and are de®ned through the mixture e�ective properties calculated at TW and T1: The maximum

absolute value of the relative error results to be dependent essentially by two particular parameters related to the
variations of a and r� in the boundary layer. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In systems where a chemical reaction of dis-
sociation±recombination takes place, the total heat
transfer may be increased owing to the energy transfer

by di�usion due to a concentration gradient. Most of
the previous work on this subject has been developed
in the ®elds of combustion [1±9], rocket propulsion
[10±13], hypersonic ¯ows and re-entry problems [1,14±

17], essentially with reference to forced convection [1±
17]. Free convection has been studied for laminar
¯ames [5±8], but without taking into account dis-

sociation e�ects. Most of the works dealing with dis-
sociation [1,4,5,8,10±13,15,16] hypothesizes that the
chemical system is one in which the migration to

products is very fast compared to the rates of di�usion
and convection through the boundary layer; assuming

in fact the existence of complete chemical equilibrium.
Other works [2,3,7,9,14] take into account ®nite chemi-
cal reaction times.

In the presence of dissociation, the total heat trans-
fer by forced convection may be increased essentially
owing to the energy of dissociation±recombination
transferred by di�usion.

On the other hand, since dissociation greatly a�ects
gas density and thus the related buoyancy forces, in
free convection it has a direct in¯uence on both the

transfer properties and the ¯ow driving forces. This
phenomenology seems much less investigated.
It is the purpose of the present paper to analyze free

convection heat transfer in a dissociating gas, assuming
very fast migration to products of complete chemical
equilibrium.
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2. Case of interest and theoretical hypotheses

Two-dimensional steady free convection from an iso-
thermal vertical plate at a temperature TW is studied in

a gas where a reversible very fast reaction of dis-
sociation At 2B takes place at atmospheric pressure.
Both A and B are treated as perfect gases with con-

stant properties except density. Laminar boundary-
layer ¯ow is assumed. Viscous dissipation, work
against gravity ®eld and thermal di�usion are

neglected. The ¯uid temperature T1 outside the
boundary layer and the pressure P throughout the
boundary layer are assumed uniform. The existence of

chemical equilibrium at any point in the system is
assumed.

3. E�ective properties

3.1. Viscosity m�

In the presence of dissociation, the mixture viscosity
is evaluated as for a `frozen' (non reacting) mixture of

perfect gases through the Wilke's relations [18]:

m� � mFR �
X
i

mi ~wiX
j

~wjfij

,

fij �

"
1�

�mi
mj

�1=2
�
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�1=4
#2

�
8

�
1� Mi

Mj

��1=2
�i � A, B and j � A, B�

�1�

where mi (or mj), ~wi (or ~wj� and Mi (or Mj� are, respect-
ively, the viscosity, the mole fraction and the molecular

weight of the ith ( jth) component of the mixture.

3.2. Conductivity l�

By introducing a `frozen' conductivity of the mix-
ture, still de®ned according to Wilke:

lFR �
X
i

li ~wiX
j

~wjfij

�i � A, B and j � A, B� �2�

Nomenclature

A, B chemical species
Cp speci®c heat at constant pressure
D coe�cient of di�usion

g gravitational constant
h local heat transfer coe�cient
�h average heat transfer coe�cient

H speci®c enthalpy
J speci®c ¯ux of matter with respect to

mass average velocity

K equilibrium constant
L height of the wall
M molecular weight
P pressure

q speci®c heat ¯ux
R0 constant of gases
T absolute temperature

T0.5; T0.99 etc. temperature related to the value of
a � 0:5 or a � 0:99 etc.

u axial velocity component

v normal velocity component
x longitudinal coordinate
y normal coordinate

DH heat of dissociation
DT0:99 =T0:995 ÿ T0:005

Nu Nusselt number

Pr Prandtl number
Gr Grashof number

Greek symbols

a fraction of moles of A dissociated
l thermal conductivity
m dynamic viscosity
~w mole fraction
r mass density
~r molar density

Subscripts

i, j referred to species A and B
FR referred to the frozen mixture
X in the X direction

ref reference
Tref at the reference temperature
T at temperature T
1 far from the wall surface

Superscript
� referred to the reacting system

(`e�ective' property)
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where li is the thermal conductivity of the ith com-
ponent of the mixture, the total heat ¯ux qx at a dis-

tance x from the leading edge of the plate is obtained
by the sum of the contributions due to the thermal
conduction and the di�usion±recombination:

qx � ÿlFR
@T

@y
� JBDH, �3�

where @T=@y is the local value of the temperature
gradient normal to the plate, JB is the speci®c mass

¯ow of B and DH is the heat of dissociation.
Since the type of di�usion involved is neither equi-

molal nor di�usion through a stagnant ®lm, JB may be

expressed through the general form of Fick's law [13]:

JB � ÿMBDBA ~rA

1

2

1ÿ a
2

@a
@y

� ÿMBDBA
rA

MA

1

2

1ÿ a
2

@a
@y

, �4�

where DBA is the coe�cient of di�usion of B through
A, ~rA is the molar density of A, a is the fraction of

dissociated moles of A and rA is the density of gas A

undissociated at the given temperature and pressure.
Since MB=MA � 1=2, it results:

JB � ÿDBArA

1

1ÿ a
2

@a
@y

�5�

Under the assumption of chemical equilibrium, a is a

function of the only temperature, thus resulting @ a
@ y �

da
dT

@T
@ y , and we may then de®ne the `e�ective' conduc-

tivity:

l� � ÿ
0@lFR �DBArADH

1

1ÿ a
2

da
dT

1A: �6�

The expressions of a and @a=@T to be introduced in
Eq. (6) may be evaluated by using the van't Ho�
equation

d
ÿ
ln Kp

�
dT

� MADH
R0T 2

, �7�

with

Kp � 4a2

1ÿ a2
P

Pref

and DH � DH�T�

� DH�Tref � �
ÿ
CpB
ÿ CpA

��Tÿ Tref �,

where Pref and Tref are the reference pressure and tem-
perature. CpA

and CpB
are the speci®c heats at constant

pressure for A and B.

Being P � Pref ;

a�Tref � � aref �
������������������
Kpref

Kpref
� 4

s

it then follows:

da
dT
�
�
DH�Tref � �

ÿ
CpB
ÿ CpA

��Tÿ Tref �
�
MA

2R0T 2
a�1ÿ a2 �

�8�

and

3.3. Density r�

From the state equation for perfect gases, it follows:

r� � PtotMA

R0

1

�1� a�T : �10�

3.4. Speci®c heat at constant pressure C �p

From the enthalpy of the mixture:

H � �1ÿ a�CpA
�Tÿ Tref � � a

�
CpB
�Tÿ Tref �

� DH
� �11�

it follows:
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� aCpB

�� DH
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Since P is assumed constant within the boundary
layer, the e�ective properties discussed above are func-

tions of the only temperature. Fig. 1 shows the typical
distributions of a and both the e�ective and `frozen'
properties with temperature, where the subscript of

temperature denotes the percent of dissociation. It may
be noticed that:

. l� and C �p undergo large variations with tempera-

ture up to ten times the frozen values, with a maxi-
mum for a � 0:5;

. l� and C �p have similar distributions, so that the

variations of the e�ective Prandtl number Pr� with
temperature are smaller than those pertinent to l�

and C �p;
. the variation of r� with temperature is much larger

than those pertinent to rA and rB:

4. Governing equations

The equations of continuity, mean motion and
energy are expressed in the following x, o coordinate
system (Fig. 2):

x � x o � y=C�x�, �13�

where C�x� � C1x
b, with C1 and b constants

Continuity

@r�u
@x
� 1

C
@r�v
@o
ÿ o

C
dC
dx

@r�u
@o
� 0 �14�

Momentum (mean mass ¯ow)

r�u
@u

@x
�
�
r�v
C
ÿ r�u

o
C

dC
dx

�
@u

@o

ÿ 1

C2

@

@o

�
mFR

@u

@o

�
� g

ÿ
r� ÿ r�1

�� 0, �15�

which, taking into account Eq. (14), becomes:

@

@x

ÿ
r�uCu

�� @

@o

�
u

�
r�vÿ r�uo

dC
dx

�

ÿ mFR

C
@u

@o

�
� g

ÿ
r� ÿ r�1

�� 0 �16�

Energy

@

@x

ÿ
r�uCh

�� @

@o

�
h

�
r�vÿ r�uo

dC
dx

�
ÿ l�

C
@T

@o

�
� 0 �17�

or

Fig. 1. Variation of the e�ective properties with temperature

in the interval of dissociation. Fig. 2. Physical model coordinate system.
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@

@x
ÿ
r�uCC �pT

�� @

@o

�
C �pT

�
r�vÿ r�uo

dC
dx

�

ÿ l�

C
@T

@o

�
� 0 �18�

Boundary conditions

o � 0; xr0: u � v � 0; T � TW �19�

o41; xr0:

u � v � 0;
@u

@o
� @v

@o
� 0; T � T1;

@T

@o
� 0

5. Method of solution

The set of equations (Eqs. (14) and (16)±(19)) has
been solved by a ®nite-di�erences method with control

volumes formulation and assuming x as one-way coor-
dinate. In the derivation of the discretization equation,
along the x direction the downstream values of the

dependent variable are assumed to prevail over the
entire Dx of the control volume (fully implicit scheme),
while along the o direction the exponential scheme [19]
has been considered.

The Dx intervals have been assumed equal to or
smaller than C�x�=4: The values of C1 and b in the
C�x� expression reported in Eq. (13) have been

assumed by a few trials so that the thermal and vel-
ocity boundary layers were contained in the interval
0RoR1: The values pertinent to the case of a ¯uid

with constant properties evaluated at T � �TW �
T1�=2 have been assumed as ®rst approximation
values. The number of grid nodes in the o coordinate
has been chosen so that at least forty grid nodes were

contained within the boundary layers. As far as the
spacing along o is concerned, uniform intervals Do
and 2Do have been assumed respectively for

0RoR0:7 and 0:7RoR1:
For each spatial interval in the x direction, both

smallness of values and ¯atness of T and u pro®les

have been veri®ed through:

jTM ÿ T1jRjTW ÿ T1j � 10ÿ3; uMRumax � 10ÿ3

jTM ÿ TMÿ1jRjTW ÿ T1j � 10ÿ4;

juM ÿ uMÿ1jRumax � 10ÿ4

Owing to the strong non-linearities essentially due to

the e�ect of the temperature on dissociation and then
on the ¯uid properties, within each discretization step
along the x direction iterations have been performed

on the temperature and velocity ®elds until conver-
gence.

6. Numerical experiments and heat transfer analysis

The thermal and velocity ®elds have been solved for

a wide range of values of the independent variables
which have in¯uence on the e�ects pertinent to dis-
sociation:

2:8� 10ÿ6RDBAR2:5� 10ÿ5
ÿ
m2=s

�
200RDH�Tref �R1900 �kJ=kg�

220RT0:5R1400 �K�

2� 10ÿ23RKp�Tref � 298 K�R4� 108 �dimensionless�

T0:5 ÿ 3DT0:99RTW, T1RT0:5 � 3DT0:99 �K�

thus resulting:

4� 10ÿ3Rr�R9
ÿ
kg=m3

�
361RC �pR109 000 �J=kg=K�

9:2� 10ÿ3Rl�R3:2 �W=m=K�

1:3� 10ÿ5Rm� � mFRR2:1� 10ÿ5 �Pa s�

0:5RjTW ÿ T1jR1420 �K�

0:18RPr�R4:4 �dimensionless�

Two kinds of gases are studied:

A, biatomic, MA = 32 and B, monoatomic, MB =
16 (as for O2t 2O)
A, polyatomic, MA = 92 and B, polyatomic, MB

= 46 (as for N2O4t 2NO2)

The pertinent values of Cp have been assumed as for
perfect gases; the values of l and m for the dissociated

species have been assumed from the undissociated
values as proportional to M 1/2 [18]. The cases studied
have been grouped in seven values of the e�ective

Grashof number Gr� in the range 5 � 10561.8 � 109.
For each gas the following computational procedure
has been developed:

. select randomly a value of DBA, DH�Tref�, T0.5, TW

and T1 in the appropriate ranges and derive the re-
lated value of Kp;
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. calculate the value of the height of the wall L perti-
nent to the given value of Gr� (for all the cases

studied it has resulted: 0.05 m R L R 12 m);
. solve the governing equations.

For each value of Gr�, 410 di�erent cases have been

solved. The random selection of both TW and T1 in
the above speci®ed range T0:5 ÿ 3DT0:99RTW,
T1RT0:5 � 3DT0:99 has led with same probability to

cases with TW > T1 and TW < T1:
The method of solution has been tested by solving

440 cases with both TW and T1 well above or below

the interval of dissociation so verifying the existence of
the conditions required to the Boussinesq's approxi-
mation application.

The velocity and temperature ®elds have been solved
and the local and total values hx and �hL of the convec-
tion heat transfer have been evaluated through:

hx � q

�TW ÿ T1� � ÿl
�
W

@T

@y

����
y�0

, �20�

where @T
@ y

��
y�0 is calculated by a three-points interp-

olation, and:

�hL � 1

L

�L
0

hx dx �21�

Eqs. (1)±(12) have then allowed us to reduce the
problem here analyzed to a free convection boundary
layer ¯ow and heat transfer with temperature-depen-

dent properties.
For gases with Pr = const and simple (like power-

law) variations of l, m and Cp with temperature

[20,21], the data obtained are successfully correlated by
an equation:

Nu1 � Cost Grm1
1 f �Pr�F�TW,T1� �22�

where f �Pr� and F�TW,T1� are functions of the con-
stants which ®gure in the power-law distributions
assumed.

In the present case, the complexity of the depen-
dence laws of the e�ective properties from temperature
makes this method unsuitable. The gases here taken
into account have instead some analogies with super-

critical ¯uids [22], whose properties variations with
temperature may be strong and non-monotonic.
Correlations for supercritical ¯uids are usually

expressed in the more traditional form:

Nu � Cost Grm1Prm2 �23�
where Nu, Gr and Pr are calculated with respect to the
integrated mean property values or to the specially

de®ned reference temperatures [22]. Nevertheless, in
the present case the use of the integrated properties
proved to be both unpractical and inaccurate.

In the present work, the best results were obtained
by using the e�ective properties evaluated at TW and

T1 for the calculation of Nu, Pr and Gr and including
the ratio rW=r1 among the dimensionless parameters.
The most suitable correlation has proved to be:

�NuW � C � Gr�m1 Pr�n1

�
Pr�W
Pr�1

� p�rW
r1

�q

�24�

with

�NuW �
�hLLtot

l�W
; Gr�1 �

gjr�W ÿ r�1jL3r�1
m2FRW

;

Pr�W �
C �pWmFRW

l�W
; Pr�1 �

C �p1mFR1
l�1

:

�25�

The values of C, m, n, p, q have been calculated by the

least-squares method through a logarithmic linear mul-
tiple regression. The validity of Eq. (23) has been
tested both for the whole set of data and for several

sub-sets of data related to di�erent ranges of values of
the independent variable. For all the tests carried out,
the values of C, m, n, p, q obtained were essentially the

same, but the scatter of data from Eq. (23) was higher
for sets related to larger ranges of some variables (i.e.,:
T0.5, TW, T1, DT0:99). Then, from the sensitivity analy-
sis performed, the data scattering resulted mainly re-

lated to two parameters, Pa and Pr, de®ned as
follows:
Parameter Pa

Pa � âmax=âmin �26�

where âmax and âmin are the maximum and the mini-

mum values of â through the boundary layer, with â �
a if aR0:5 and â � 1ÿ a if a > 0:5; it then follows:

âmin � min�âW,â1�

âmax � 0:5

if �aWr0:5 and a1R0:5� or �aWR0:5 and a1r0:5�

âmax � max�âW,â1�

if �aWr0:5 and a1r0:5� or �aWR0:5 and a1R0:5�

Parameter Pr

Pr � r�W=r
�
1 if r�W > r�1 �27a�

Pr � r�1=r
�
W if r�WRr�1 �27b�

The best ®t of data has been obtained with the follow-
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ing correlation (Fig. 3):

�NuW � 0:52Gr�0:251 Pr�0:331

�
Pr�W
Pr�1

�0:55�rW
r1

�ÿ0:2
�28�

In Fig. 4 the standard deviation of data e and the
maximum absolute value of the relative error

jZj �
����NuW�Eq: �28� ÿNuW�datum�

NuW�datum�
����

are reported against Pr for di�erent values of the
maximum value of Pa: It can be noticed that values of

jZjmax < 10% can be achieved for values of Pa < 10 if
a higher limit of 1.5 is wanted for Pr:

7. Conclusions

The heat transfer coe�cients in two-dimensional free
convection from an isothermal vertical plate in a gas
where a reversible very rapid reaction of dissociation

At 2B takes place, may be expressed by a single cor-
relation even if the temperature interval in the bound-
ary layer �TW, T1) is allowed to vary in a rather wide

range, both in relative location and width, in respect
to the temperature interval of dissociation. The corre-
lated dimensionless parameters must include the ratio

rW=r1 and must be de®ned through the mixture e�ec-
tive properties calculated at TW and T1. The maxi-
mum absolute value of the relative error has resulted

to be dependent essentially by two particular par-
ameters related to the variations of a and r� in the
boundary layer.
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