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Abstract

Two-dimensional steady free convection from an isothermal vertical plate is studied in a gas where a reversible
very fast reaction of dissociation A <> 2B takes place at atmospheric pressure. The effective properties in the
presence of dissociation are evaluated. The governing boundary-layer equations are solved numerically for a wide
range of values of the independent variables. All the data obtained are correlated by a single correlation even if the
temperature interval in the boundary layer (T, Ts) is allowed to vary in a wide range, both in relative location
and width, in respect to the temperature interval of dissociation. The correlated dimensionless parameters include
the ratio py/p., and are defined through the mixture effective properties calculated at Ty and T. The maximum
absolute value of the relative error results to be dependent essentially by two particular parameters related to the
variations of o and p* in the boundary layer. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In systems where a chemical reaction of dis-
sociation—recombination takes place, the total heat
transfer may be increased owing to the energy transfer
by diffusion due to a concentration gradient. Most of
the previous work on this subject has been developed
in the fields of combustion [1-9], rocket propulsion
[10-13], hypersonic flows and re-entry problems [1,14—
17], essentially with reference to forced convection [1—
17]. Free convection has been studied for laminar
flames [5-8], but without taking into account dis-
sociation effects. Most of the works dealing with dis-
sociation [1,4,5,8,10-13,15,16] hypothesizes that the
chemical system is one in which the migration to

* Corresponding author.

products is very fast compared to the rates of diffusion
and convection through the boundary layer; assuming
in fact the existence of complete chemical equilibrium.
Other works [2,3,7,9,14] take into account finite chemi-
cal reaction times.

In the presence of dissociation, the total heat trans-
fer by forced convection may be increased essentially
owing to the energy of dissociation—recombination
transferred by diffusion.

On the other hand, since dissociation greatly affects
gas density and thus the related buoyancy forces, in
free convection it has a direct influence on both the
transfer properties and the flow driving forces. This
phenomenology seems much less investigated.

It is the purpose of the present paper to analyze free
convection heat transfer in a dissociating gas, assuming
very fast migration to products of complete chemical
equilibrium.
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Nomenclature
A, B chemical species Pr Prandtl number
Cp specific heat at constant pressure Gr Grashof number
D coeflicient of diffusion
g gravitational constant Greek symbols
h local heat transfer coefficient o fraction of moles of A dissociated
h average heat transfer coefficient A thermal conductivity
H specific enthalpy i dynamic viscosity
J specific flux of matter with respect to 7 mole fraction
mass average velocity o mass density
K equilibrium constant D molar density
L height of the wall
M molecular weight Subscripts
P pressure ij referred to species A and B
q specific heat flux FR referred to the frozen mixture
Ro constant of gases X in the X direction
T absolute temperature ref reference
To.s; Tooo tc. temperature related to the value of Trer at the reference temperature
o= 0.5 or o« = 0.99 etc. T at temperature T
u axial velocity component 00 far from the wall surface
v normal velocity component
X longitudinal coordinate Superscript
y normal coordinate * referred to the reacting system
AH heat of dissociation (‘effective’ property)
ATy 99 = T0.995 — T0.005
Nu Nusselt number
2. Case of interest and theoretical hypotheses Z Kl
Z 7iby
Two-dimensional steady free convection from an iso-
thermal vertical plate at a temperature 7'y is studied in 1 1472
a gas where a reversible very fast reaction of dis- |:1 n (,u,) / <%> i| )
sociation A < 2B takes place at atmospheric pressure. M M;
Both A and B are treated as perfect gases with con- by =

stant properties except density. Laminar boundary-
layer flow is assumed. Viscous dissipation, work
against gravity field and thermal diffusion are
neglected. The fluid temperature 7, outside the
boundary layer and the pressure P throughout the
boundary layer are assumed uniform. The existence of
chemical equilibrium at any point in the system is
assumed.

3. Effective properties
3.1. Viscosity u*
In the presence of dissociation, the mixture viscosity

is evaluated as for a ‘frozen’ (non reacting) mixture of
perfect gases through the Wilke’s relations [18]:

M7
81+ —
()]

(i=A,Bandj=A,B)
where y; (or ), 7; (or %;) and M; (or M)) are, respect-
ively, the viscosity, the mole fraction and the molecular
weight of the ith (jth) component of the mixture.

3.2. Conductivity J*

By introducing a ‘frozen’ conductivity of the mix-
ture, still defined according to Wilke:

Zifli . ;
AFR_Z (i=A,Bandj=A,B) )
ZV/ i
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where 4; is the thermal conductivity of the ith com-
ponent of the mixture, the total heat flux ¢, at a dis-
tance x from the leading edge of the plate is obtained
by the sum of the contributions due to the thermal
conduction and the diffusion—recombination:

0T
qx = —)kaa—y + JsAH, (3)

where d7/dy is the local value of the temperature
gradient normal to the plate, Jy is the specific mass
flow of B and AH is the heat of dissociation.

Since the type of diffusion involved is neither equi-
molal nor diffusion through a stagnant film, Jg may be
expressed through the general form of Fick’s law [13]:

1

1115

d(InK,)  MsAH

= 7
dT RyT2"’ @
with
42 P
K= P
1—0(2 Pref

and AH = AH(T)

= AH(Twr) + (CpB - CpA)(T_ Tret ),
where P and T are the reference pressure and tem-
perature. Cp,, and Cp, are the specific heats at constant
pressure for A and B.

Being P = Pyy;

K
- ad _ _ Pre
Jg = —]WBDBAPA1 x 3—; U Tref) = Olrer = K, _;_4
2
| it then follows:
H  du
= _MBDBA%72 e (4) do  [AH(Twr) + (Cpy — Cp )(T = Trer) [ Ma ,
Al—2ay — = . a(l —o?)
3 dT 2R, T
. . e (®)
where Dgp is the coefficient of diffusion of B through
A, p, is the molar density of A, o is the fraction of and
2
et M 1 1 T
1= azfeXP<R70{[AHTm - (CPB - CpA)Tref] <fet T + (Cpa - CpA)ln T
"= 2 : ©)
o M 1 1 T
1 — e — 2 AHy, — (Coy — Co, ) Tre - C,, — Co )1
1 — arzefexp( Ry {[ Tret ( PB PA) f](Tref T) + ( PB PA) n Tt })

dissociated moles of A and p, is the density of gas A
undissociated at the given temperature and pressure.
Since Mg/Ma = 1/2, it results:

1 da

Jg=-D _— 5
B BApAl—gay %)

Under the assumption of chemical equilibrium, « is a
function of the only temperature, thus resulting % =

$%.4L, and we may then define the ‘effective’ conduc-
tivity:
1 da
/l* = — )”FR + DBAPAAH—_ (6)
1— % dT

The expressions of o and da/0T to be introduced in
Eq. (6) may be evaluated by using the van’t Hoff
equation

3.3. Density p*

From the state equation for perfect gases, it follows:

_ PtotMA 1

* —_ 10
Ry (14+o)T (10)
3.4. Specific heat at constant pressure C
From the enthalpy of the mixture:
H=(~1- cx)CpA(T— Teet) + oc[CpB(T— Trer)
+ AH] an
it follows:
. dH do
Cr=q5= [(1—a)Cp, +0Cp, |+ AH . (12)
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Since P is assumed constant within the boundary
layer, the effective properties discussed above are func-
tions of the only temperature. Fig. 1 shows the typical
distributions of o and both the effective and ‘frozen’
properties with temperature, where the subscript of
temperature denotes the percent of dissociation. It may
be noticed that:

e /" and C, undergo large variations with tempera-
ture up to ten times the frozen values, with a maxi-
mum for o 22 0.5;

e /* and C; have similar distributions, so that the
variations of the effective Prandtl number Pr* with
temperature are smaller than those pertinent to A*
and C ;;

e the variation of p* with temperature is much larger
than those pertinent to p, and pg.
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Fig. 1. Variation of the effective properties with temperature
in the interval of dissociation.

4. Governing equations

The equations of continuity, mean motion and
energy are expressed in the following &, @ coordinate

system (Fig. 2):

(=x  o=y/¥X),

where ¥(x) = Clxﬂ , with C| and f§ constants

Continuity

*

ap*u  10p*v  wd¥dp*u

. —_ — :0
a¢ Y dw ¥ dx dw

Momentum (mean mass flow)

*u%_’_(p*v_ mgd‘l’)i)u
PUge Uy ~P "y ax

dw

1 o ou
B ?%(“@) 8"~ p%)=0.

which, taking into account Eq. (14), becomes:

i( *u?’u)+i|:u< *y — *uwg>
9\ do |\ VTP

Per Ou *
| e =0
Energy
3, ., d . . d¥ AaT
8_é(p u‘I’h)—i—%[h(p v—0p uwdx) ¥ 30
=0

or

—
w

Fig. 2. Physical model coordinate system.
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8_5('0 u‘I’CpT)—f— a—w[CPT(p v—p uwa>
AorT
-2 1=0 18
‘I’aw] (18)
Boundary conditions
w=0; £=0: u=v=0, T=Ty 19)
w—o0; E>0:
u=v=_0; @zﬂzo; T = Tx; a—T:0
o Jdw dw

5. Method of solution

The set of equations (Egs. (14) and (16)—(19)) has
been solved by a finite-differences method with control
volumes formulation and assuming ¢ as one-way coor-
dinate. In the derivation of the discretization equation,
along the ¢ direction the downstream values of the
dependent variable are assumed to prevail over the
entire A¢ of the control volume (fully implicit scheme),
while along the o direction the exponential scheme [19]
has been considered.

The A¢ intervals have been assumed equal to or
smaller than Y(x)/4. The values of C; and f in the
Y(x) expression reported in Eq. (13) have been
assumed by a few trials so that the thermal and vel-
ocity boundary layers were contained in the interval
0<w<1. The values pertinent to the case of a fluid
with constant properties evaluated at 7= (Tw+
Tw)/2 have been assumed as first approximation
values. The number of grid nodes in the @ coordinate
has been chosen so that at least forty grid nodes were
contained within the boundary layers. As far as the
spacing along o is concerned, uniform intervals Aw
and 2Aw have been assumed respectively for
0<w<0.7and 0.7<w<1.

For each spatial interval in the ¢ direction, both
smallness of values and flatness of 7' and u profiles
have been verified through:

ITy — Tool <ITw — Tool X 107 tps <thmax x 1072

| Ty — Ty—t | <|Tw — Tool x 1074
|uM - uM71|Sumax X 1074

Owing to the strong non-linearities essentially due to
the effect of the temperature on dissociation and then
on the fluid properties, within each discretization step
along the ¢ direction iterations have been performed

on the temperature and velocity fields until conver-
gence.

6. Numerical experiments and heat transfer analysis

The thermal and velocity fields have been solved for
a wide range of values of the independent variables
which have influence on the effects pertinent to dis-
sociation:

2.8 x 1070 <Dpp<2.5x 107 (m?/s)

200 <AH(T,r) <1900 (kJ/kg)

220<Ty5<1400 (K)

2x 1072 < Ky(Trer = 298 K)<4 x 10°  (dimensionless)

Tos —3AT099 < Tw, Too <Tos5 +3ATp99 (K)
thus resulting:

4x 1073 <p*<9  (kg/m?)
361<C;<109000 (J/kg/K)

9.2x 1073 <2*<3.2 (W/m/K)

13x 10759 <pu* = upp <2.1 x 107> (Pas)
0.5<|Tyw — Too] <1420 (K)

0.18<Pr*<4.4 (dimensionless)

Two kinds of gases are studied:

A, biatomic, Ms = 32 and B, monoatomic, Mg =
16 (as for O, < 20)

A, polyatomic, M, = 92 and B, polyatomic, My
= 46 (as for N,O4 < 2NO,)

The pertinent values of C, have been assumed as for
perfect gases; the values of 4 and pu for the dissociated
species have been assumed from the undissociated
values as proportional to M '/? [18]. The cases studied
have been grouped in seven values of the effective
Grashof number Gr* in the range 5 x 10° = 1.8 x 10°.
For each gas the following computational procedure
has been developed:

e seclect randomly a value of Dga, AH(Tyet), Tos, Tw
and T, in the appropriate ranges and derive the re-
lated value of Kj,;
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e calculate the value of the height of the wall L perti-
nent to the given value of Gr* (for all the cases
studied it has resulted: 0.05m < L < 12 m);

e solve the governing equations.

For each value of Gr*, 410 different cases have been
solved. The random selection of both Ty and T, in
the above specified range Tos5— 3AT099<Tw,
Too<Tys+3ATyg9 has led with same probability to
cases with Ty > T, and Ty < Two.

The method of solution has been tested by solving
440 cases with both Ty and T, well above or below
the interval of dissociation so verifying the existence of
the conditions required to the Boussinesq’s approxi-
mation application.

The velocity and temperature fields have been solved
and the local and total values 4, and h; of the convec-
tion heat transfer have been evaluated through:

q » 0T
hh=——"—"—=-23—| , 20
YT (Tw - Two) Moyl 0
where ‘Z—IT =0 is calculated by a three-points interp-

olation, and:

- 1 (F
hy = ZL hy dx (21)
Egs. (1)—(12) have then allowed us to reduce the
problem here analyzed to a free convection boundary
layer flow and heat transfer with temperature-depen-
dent properties.

For gases with Pr = const and simple (like power-
law) variations of A, u and C, with temperature
[20,21], the data obtained are successfully correlated by
an equation:

Niutso = Cost Gr™ f(Pr)®(Ty,Too) (22)

where f(Pr) and ®(Tw,T) are functions of the con-
stants which figure in the power-law distributions
assumed.

In the present case, the complexity of the depen-
dence laws of the effective properties from temperature
makes this method unsuitable. The gases here taken
into account have instead some analogies with super-
critical fluids [22], whose properties variations with
temperature may be strong and non-monotonic.
Correlations for supercritical fluids are usually
expressed in the more traditional form:

Nu = Cost G Pr"? (23)

where Nu, Gr and Pr are calculated with respect to the
integrated mean property values or to the specially
defined reference temperatures [22]. Nevertheless, in
the present case the use of the integrated properties
proved to be both unpractical and inaccurate.

In the present work, the best results were obtained
by using the effective properties evaluated at 7y and
T for the calculation of Nu, Pr and Gr and including
the ratio py,/p., among the dimensionless parameters.

The most suitable correlation has proved to be:

_ Pr* P 0 q
N = C. G ppn w rw 24
o))
with
- h L glply — Pl 1L Pt
‘W HERW 25)
C* 1 C*
Pre — pw!FRW Prt = P! FRoO
w A* > o0 A*
w 0

The values of C, m, n, p, ¢ have been calculated by the
least-squares method through a logarithmic linear mul-
tiple regression. The validity of Eq. (23) has been
tested both for the whole set of data and for several
sub-sets of data related to different ranges of values of
the independent variable. For all the tests carried out,
the values of C, m, n, p, g obtained were essentially the
same, but the scatter of data from Eq. (23) was higher
for sets related to larger ranges of some variables (i.e.,:
Tos, Tw, Too, ATpo9). Then, from the sensitivity analy-
sis performed, the data scattering resulted mainly re-
lated to two parameters, IToo and IIp, defined as
follows:
Parameter I1o

Ilo = &max/&min (26)
where Oma and Omi, are the maximum and the mini-
mum values of & through the boundary layer, with & =

aif <0.5and & =1 — o if o > 0.5; it then follows:

é\‘min = min(&W,&oc)

Omax = 0.5

if (o >0.5 and 0o, <0.5) or (o <0.5 and ¢ >0.5)

é\‘max = maX(&Wa&oo)
if (e >0.5 and 65 >0.5) or (o <0.5 and 0y, <0.5)
Parameter I1p

IIp = py/ps  if Py > p5 (27a)

IIp = pi /Py if Py <p (27b)

The best fit of data has been obtained with the follow-
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Fig. 3. Comparison between the Nusselt numbers predicted
with Eq. (28) and the Nusselt numbers resulting from numeri-
cal experiments.

ing correlation (Fig. 3):

_ Pr* 0.55 02
Nuy = 0.52Gr0% ppr933 (%) (Z—W> (28)

In Fig. 4 the standard deviation of data ¢ and the
maximum absolute value of the relative error

Nuw(Eq. (28) — Nuy{datum)

Il = Nuy(datum)
&:nl 1 —o—Inl
25 % max
—— &
~Z
20 %4 na < 25/ ¢
5
15 %
25
10 % -
5 %-
— ———— 2 .
o T T T T T T T >
111126 156 1.75 2 2.25 26 Ilp

Fig. 4. Dependence of the standard deviation and the maxi-
mum absolute value of the relative error of the Nusselt num-
bers predicted with Eq. (28) on the ITo and ITp parameters.

are reported against ITp for different values of the
maximum value of ITa. It can be noticed that values of
[7max < 10% can be achieved for values of ITa < 10 if
a higher limit of 1.5 is wanted for ITp.

7. Conclusions

The heat transfer coefficients in two-dimensional free
convection from an isothermal vertical plate in a gas
where a reversible very rapid reaction of dissociation
A < 2B takes place, may be expressed by a single cor-
relation even if the temperature interval in the bound-
ary layer (Ty, T.,) is allowed to vary in a rather wide
range, both in relative location and width, in respect
to the temperature interval of dissociation. The corre-
lated dimensionless parameters must include the ratio
Pw/Ps and must be defined through the mixture effec-
tive properties calculated at Ty and T... The maxi-
mum absolute value of the relative error has resulted
to be dependent essentially by two particular par-
ameters related to the variations of o and p* in the
boundary layer.
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